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SUMMARY 

The study presents a new general integral identity for the velocity potential of flow about a body in regular 
water waves. This integral identity is valid outside, inside, and exactly on the surface of the body, and is 
equivalent to the set of three classical identities valid strictly outside, inside, and on the body, respectively. 
For the usual problem of wave radiation and diffraction by a body, the integral identity yields an integral 
equation for determining the potential on the body surface. An interesting feature of the integral identity 
and related integral equation obtained in this study is that they involve an integral of the Green function over 
the waterplane inside the body in the case of an open sea-surface piercing body. Alternatively, these equations 
can be expressed in terms of a modified Green function involving the previously-noted waterplane integral of 
the Green function. 

1. Introduction 

Diffraction and radiation of  regular (time-harmonic) water waves by fixed structures (such as 

offshore terminals and drilling platforms) or moving bodies (moored tankers, floating offshore 

platforms, and wave-energy devices) is a subject of  great practical importance in ocean engin- 

eering. Diffraction and radiation of  regular waves by two-dimensional horizontal cylinders is 

also important in naval hydrodynamics for predicting ship motions within the framework of  

the slender-ship theory, as is explained in Newman [ 1 ] for instance. 

With the advent of  large computers, calculations of  wave radiation and diffraction by three- 

dimensional bodies have become feasible. As a matter o f  fact, a number of  computer programs, 

based on both integral-equation and finite-element methods, have been developed and used. 

A review of  the development of  these numerical methods may be found in Mei [2] ; additional 

recent calculation methods have been developed by Guevel, Daubisse, and Delhommeau [3],  

and Martin [4].  However, calculations for arbitrary three-dimensional bodies are time con- 

suming, and there is a need for seeking improved computational methods. 

The present study is concerned with the method of  integral equations. This classical method 

consists in formulating, and then solving numerically, an integral equation for the velocity 

potential or an assumed auxiliary distribution of  sources or dipoles, as is explained for instance 
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in John [5], Wehausen [6], and Mei [2]. Integral equations for source distributions were 
apparently first used by Kim [7] for elliptical cylinders and ellipsoids, by Daubert and 
Lebreton [8] and Frank [9] for general cylinders, and by Lebreton and Margnac [10] for 
three-dimensional bodies. Other applications of the integral-equation method are reviewed in 
[2]. This method is also used in [3]. 

The integral-equation method is based on the use of a Green function representing the 
velocity potential due to a pulsating source at a fixed position below the sea surface or a 
pulsating flux across the sea surface. The computing times involved in the integral-equation 
method directly depend on, indeed are essentially proportional to, the computing times 
required for evaluating the Green function. This motivated a search for single-integral repre- 
sentations and series representations of the Green function suited for efficient numerical 
evaluation. Several integral representations, obtained and used by various authors, are listed in 
Noblesse [11], where new series representations are also obtained. Specifically, an asymptotic 
expansion and a convergent ascending series are obtained; these series permit simple and effi- 
cient numerical evaluation of the Green function for large and small distances, respectively, 
from the mean-sea-surface mirror-image of the singularity (submerged source or flux across the 
sea surface). One-dimensional Taylor series expansions of the Green function in the neighbor- 
hood of the horizontal and vertical axes are also given in [11 ]. This study of the Green func- 
tion is supplemented by the present study, concerned with the formulation of an integral 
equation for determining the velocity potential. 

More precisely, a new basic integral identity satisfied by the potential is obtained. In the 
important particular case of radiation and diffraction of regular waves by a body, this general 
integral identity becomes an integral equation for calculating the potential on the surface of the 
body. Analogous integral identities and related integral equations have previously been obtained 
by the author for the problems of potential flow about a body in an unbounded fluid [12] and 
about a ship in steady rectilinear motion in a calm sea (the ship wave-resistance problem) [13]. 
The present study thus is closely related to, and indeed supplements, studies [1 I, 12, 13]. 

The plan and main results of this study are now presented. The basic potential-flow problem 
of the linearized theory of flow about a body in regular water waves is briefly formulated in 
Section 2. Also stated in this section are fundamental equations, specifically equations (2.4a, b) 
and equations (2.5a, b), satisfied by the Green function. Equations (2.4a, b) are well known. 
However, these equations are only valid strictly below the mean sea surface ~" = 0, and equa- 
tions (2.5a, b) are appropriate in the limit g" = 0, as was previously shown in [ 11 ]. 

The core of the study is Section 3, in which basic integral identities for the velocity potential 
are obtained. The three classical integral identities (3.6a, b, c) - valid strictly outside, inside, 
and on the surface of the body, respectively - are first obtained. However, the main result of 
Section 3 is the new integral identity (3.8), which is valid outside, inside, and exactly on the 
body surface, and in fact is equivalent to the set of the three usual identities (3.6a, b, c). An 
interesting feature of the integral identity (3.8) for an open sea-surface piercing body is the 
presence of the 'waterplane integral' w defined by equation (3.8a). This waterplane integral 
vanishes for a fully-submerged closed body, and integral identity (3.8) becomes identity (3.10). 
An alternative form of the integral identity (3.8) is given by identity (3.9) involving the 'modi- 
fied Green function' t~ defined by equation (3.9a). In the case of a fully-submerged closed 



body, the modified Green function t~ becomes identical to the original Green function G, and 
identity (3.9) becomes identity (3.10). 

For the important usual problem of wave radiation and diffraction by a body, the potential 
¢ satisfies the Laplace equation V2¢ = 0 in the mean flow domain and the (linearized) sea- 
surface boundary condition a¢/az -f~b = 0 on the mean sea surface, and the general integral 
identity (3.8) becomes equation (4.2), which is an integral equation for determining the poten- 
tial on the surface b of the body. This integral equation is considered in Section 4. 

2. The basic potential-flow problem and the Green function 

The basic potential-flow problem of the linearized theory of flow about a body in regular water 
waves is briefly formulated below. A sea of large depth and horizontal extent is assumed. 
The only body force considered is that due to a uniform gravitational field, with acceleration g. 

Water is regarded as homogeneous and incompressible, with density p. Viscosity effects are 
ignored, and irrotational flow is assumed. Surface tension, wavebreaking, spray formation along 
the intersection between the surfaces of the body and the sea, and nonlinearities in the sea- 
surface condition are neglected. The mean (undisturbed) sea surface is taken as the plane Z = 0. 

Only flows simple-harmonic in time, with radian frequency co (period 2zr/co), are considered 
in this study. The velocity potential ~ '(X, T) may thus be expressed in the form 

• '(X, T) = Re ~(X) exp (--icoT), 

where the 'spatial component' ~(X) of the actual potential ~ '(X, T) only depends on the 
position vector X and not on the time T, and Re represents the real part of the complex func- 
tion on the right side. Eventual (linearized) pressure distribution P'(X,  Y, T) and flux distri- 
bution Q'(X, Y, T) at the mean sea plane likewise are assumed to be of the form 

P'(X,  Y, T) = ReP(X, Y) exp (-- ico T), 

' X  Q ( , Y, T) = Re Q (S, Y) exp ( -  icoT). 

Nondimensional variables are defined in terms of I/co as reference time and of some reference 
length L, from which the reference velocity coL, potential coL 2, and pressure ow2L 2 can be 
formed. The nondimensional variables 

t = wT, x = X/L, 4~ = ~/coL 2, p = P/pw2L ~, q = Q/wL 

are then defined. 
In terms of the above nondimensional variables, the basic potential-flow problem of the 

linearized theory of flow about a body in regular water waves can be stated as follows. The 
problem consists in solving the Laplace equation 

V20 = 0 in d, (2.1) 
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subject to boundary conditions specified below. The solution domain d in equation (2.1) is the 
domain exterior to the body and bounded upwards by the mean sea surface, o say, which 
consists in the whole plane z = 0 if the body is fully submerged, or in the portion of the plane 

z = 0 exterior to the body if it pierces the sea surface. 
On the body surface, b say, which actually consists in only the portion of the body surface 

located below the plane z = 0 if the body pierces the sea surface, the potential must satisfy 

the usual Neumann condition 

a¢/an given on b, (2.2) 

where b¢/bn = V~. n is the derivative of ~ in the direction of the unit normal vector n to b, 
taken to be pointing inside the fluid. The precise form taken by the expression for a¢/3n on b 
in particular problems, notably in the usual 'radiation' and 'diffraction' problems, may be 

found in various places in the literature, e.g., in Wehausen [6] and Newman [14]. 

On the mean sea surface o, the potential must satisfy the (linearized) sea-surface condition 

a¢/Oz -- f ¢  = ifp - q on o, (2.3) 

where f is the nondimensional frequency parameter defined as 

f = co2L/g. (2.3a) 

For most problems of practical interest, the pressure at the sea surface is constant equal to the 

atmospheric pressure, and there is no flux across the sea surface, so that one usually has p = 0 
= q. A derivation of the sea-surface boundary condition (2.3) in the general case when sea- 

surface pressure and flux distributions are allowed may be found in [11]. Finally, the usual 

'radiation condition,' expressing that waves at a sufficient distance away from the disturbance 
(here, a body) which created them are like 'outgoing' progressive waves, must be imposed for 

uniqueness. 
The above-defined boundary-value problem can be solved by formulating an integral equa- 

tion for the velocity potential based on the use of the Green function, denoted by G(Ij, x) or 

simply G, associated with the linearized sea-surface boundary condition (2.3). The Green 
function G(Ij, x) is the 'spatial component' of the velocity potential Re G(I~, x) exp (--it)  
of the flow created at point Ij by a pulsating outflow of strenght Re exp ( -  it) located at point 

x, stemming from a submerged point source if z < 0 or from a point flux across the mean 
sea surface ifz = 0. Specifically, the Green function satisfies the following equations 

V2G = 8 ( x - ~ ) 8 ( y - - r l ) 6 ( z - - ~ )  in z < 0 ~ (2.4a) 
if ~ '<  0, 

a G / a z - - f G  = 0 on z = 0 (2.4b) 

V2G = 0 in z < 0 ~ (2.5a) 

J if g ' = 0 .  
a a / a z - - f a  = - - 6 ( x - - ~ ) b ( y - - n )  on z = 0 (2.5b) 



Equations (2.4a, b) are well known. However, these equations are valid only for ~" strictly 
negative, and equations (2.5a, b) are proper in the limiting case ~" = 0. A derivation of equations 
(2.4) and (2.5) is given in [11], where an ascending series and an asymptotic expansion for the 
Green function may also be found. Both equations (2.4) and (2.5) are used in the following 
section for obtaining integral identities for the velocity potential. 

3. Fundamental integral identities 

In this section, basic integral identities for the velocity potential are obtained by applying a 

classical Green identity to the potential ¢ = ¢ (x) and the previously-defined Green function 
G = G(~j, x). The case of a body piercing the sea surface is considered for definiteness. The 

Green identity is 

fa' (¢V2 G -- GV 2 c~) dv = fo' (qJaG/az - G3c~/3z) dxdy 

+ fb (Ga~p/On -- ¢baG/On)da + fboo (¢p3G/an -- G3¢/3n)da, (3.1) 

where d '  is the finite domain bounded by the body surface b, the mean sea plane z = 0, and 
some arbitrary, but sufficiently-large, exterior surface b.~ surrounding the body surface b, 
as is shown in Figure I ; furthermore, a '  is the portion of the plane z = 0 between the inter- 

section curves c and c~ of the plane z = 0 with the body surface b and the exterior surface 
b~, respectively. On the surfaces b and boo, we have a¢/an = V¢. n and aG/an = VG. n where 
n is the unit outward normal vector to b or boo, as is shown in Figure 1. Finally, dv and da 

represent the differential elements of volume and area at the integration point x of the domain 
d'  and the surfaces b or b**, respectively, and dxdy evidently is the differential element of area 
of the mean sea surface. 

The integral over the exterior surface boo in equation (3.1) can be shown to vanish as this 
large surrounding surface is made ever larger. This integral can then be ignored if the finite 
domain d '  and the finite region a'  of the mean sea plane are replaced by the unbounded mean 
flow domain d and the unbounded mean sea surface o outside the body surface b and its 
intersection curve c with the plane z = 0, respectively. By expressing the integrand CaG/az - 
G3¢/3z of the sea-surface integral (3.1) in the form q~(3G/3z - f G )  -- G(a¢/az -fib), we may 
obtain 

f~ CV~G dv-fo ¢(aGlaz--fG)dxdy = 

fa GV2¢ dv -- fo G(aqJ/az --fqJ)dxdy + fb (Ga¢/an -- CaG/an)da. (3.2) 
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By expressing the potential (a in the integrands of the two integrals on the left side of  equa- 

tion (3.2) in the form (a = (a, + ((a -- (a,), where (a = (a(x) as was defined previously, and (a, 

represents the potential at the field point I j ,  that is (a, = ~ j ) ,  we may obtain 

f .  (aV2G d v - - f  (a(aGlaz-fG)dxdy = C(a, + C', (3.3) 
art ~O 

where C and C' are defined as 

C = fa V2Gdv--fa(aG/az--fG)dxdy' 

c' = fa ((a-(a*)V2Gdv-fo ((a-(a,)(aGlaz- fG)dxdy. 

(3.4) 

It may be seen from equations (2.4) and (2.5) that we have C'  = 0 if (a - (a, = (a(x) - (a(Ij) ~ 0 

as x ~ ~j, that is if  the potential is continuous everywhere in the solution domain d and on its 
boundary o + b + c, as is assumed here. Use of  equation (3.3), with C '  = 0, in equation (3.2) 

then yields 

(3.5) 

where C is given by formula (3.4). 
Use of  equations (2.4) and (2.5) in expression (3.4) for C shows that we have C = 1 if 

the field point ~ is strictly outside the body surface b, in d or on o, whereas we have C = 0  

if ~ is strictly inside the body surface b. We thus have 

(a* = fa GV2(adv--fo G(a(a[az " f(a)dxdy + fb (Ga¢/an--(aaG[an)da (3.6a) 

for ~ in the exterior domain d + o - - b  - - c ,  and 

0 = fa GV2(adv--.Io G(O(a/Oz--f¢)dxdy +fb (GO(alan--(aaG/an)da (3.6b) 

for ~ in the interior domain d~ + ai - - b  - - c  where di and t h represent the domain and the 
portion of the plane z = O, respectively, strictly inside the body surface b, as is shown in 

Figure 1, so that d + di + b and o + oi + c are the whole lower half space z < 0 and the 
whole plane z = 0, respectively. It can also be seen from equations (2.4) and (2.5) that we 
have C = 1/2 if the point ~ is exactly on the body surface b or its intersection c with the plane 
z = O, at least for points ~ where b + c is smooth; more generally, the value of 4zrC (or 27rC) 
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at a point ~j of b (or c) is equal to the angle at which d(or o) is viewed from the point ~.  We 
then have 

¢ , /2  = fa GV2¢dv- fo GOcp/az--f¢)dxdy + fb (Gi)ck/an--¢aG/Dn)da (3.6c) 

for ~ exactly on smooth b + c. Equations (3.6a, b, c) are well known, although the particular 
cases of these equations corresponding to V2¢ = 0 = ac~/az -re  are usually given in the litera- 
ture, and these equations are usually obtained from the Green identity (3.1) in a manner 
different from that shown here. 

The value of the constant C on the left side of equation (3.5) is discontinuous across the 
body surface b, C being equal to 1 outside b and to 0 inside, as is explicitly indicated in equa- 
tions (3.6). This discontinuity in the value of C evidently is accompanied by a corresponding 
discontinuity on the right side of equation (3.5). Specifically, the latter discontinuity stems 
from the integral fb CaG/an da, which represents a potential associated with a distribution of 
normal dipoles on the body surface. An integral identity valid for any point ~ - outside, inside, 
or exactly on the body surface - can be obtained by eliminating the discontinuity in the value 
of C in equation (3.5). This can be done by adding the term Ci¢. on both sides of equation 
(3.5), with Ct given by 

Ct = fat V2Gdv- J~i OG/az-fG)dxdy. (3.7) 

Use of the divergence theorem 

Ydi V2Gdv = fat OG/azd.xdy + fb aG/an da 

in equation (3.7) yields the alternative expression 

C~ = f faiGdxdy + fb aG/anda. (3.7a) 

By adding the term Ci¢. on the left and right sides of equation (3.5), with Ci given by 
expression (3.7) on the left side and expression (3.7a) on the right side, we may obtain 

+ fb [Ga,I,/an - (~ - ~ , )aG /an ]  da, 
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where I is def ined as 

I = fa.aV~Gdv-fo+o(aG/az--fG)dxdy. 

It can be seen from equations (2.4) and (2.5) that we have I -  1 for any point ~ in the lower 
half space ~" <~ 0. 

We then have 

(1--,fw,)~, = fa GVlcjdv- fa G(a4~iaz --f~)dxdy + fb [Ga~lan -(¢,-¢,,)aolan]~, 
(3.8) 

where w. -~ w(~j) is the 'waterplane integral' given by 

w(~) = [ G(~,x,y,z = 0)dxdy. (3.8a) 
i 

An alternative form of the integral identity (3.8) involving a 'modified Green function' G can 
be obtained by dividing equation (3.8) by 1-fw,. This yields 

~, = ]] GV2dpdv--fa ~(a¢laz--fdp)dxdy + fb [Gb¢/an- (¢ -  ¢,)aG/anl da, (3.9) 

where the 'modified Green function' G is given by G = G/(1 - - fw,) ,  that is 

~(~,x)  = G(~,x)/[1--ffoiG(~,x)dxdy ] . (3.9a) 

The above integral identities were derived for the case of an open body piercing the sea surface, 
as is shown in Figure 1. In the case of a closed body entirely submerged below the sea surface, 
we evidently have o~---0, so that the waterplane integral w vanishes and the modified Green 
function ~ is identical to the original Green function G, and the alternative identities (3.8) 
and (3.9) take the same form, namely 

dp, = fa GV2d~dv-- fz=oG(adP/az--f(a)dxdy +jb [Ga(~/an--(c~--q~,)aG/an]da, 
(3.10) 

where b is a fully-submerged closed surface. The classical integral identities (3.6a, b, c), on the 
other hand, take the same form for open sea-surface piercing surfaces and closed fully-sub- 
merged surfaces. 
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The integral identity (3.8) is valid for any point Ij, whether outside, inside, or exactly on the 

body surface b. This new identity thus is essentially equivalent to the set of the three classical 
identities (3.6a, b, c), which are valid exclusively for ~ outside, inside, and on the body surface 
b, respectively. As a matter of fact, these three identities can be obtained from the identity 

(3.8) by noting that we have fw. + fb~G/an da = O, 1, or 1/2 for ~j outside, inside, or on the 
body surface b, respectively, as may be verified from equations (3.7a), (3.7), (2.4) and (2.5). 

The classical identities (3.6a, b, c) likewise can be obtained from identity (3.10) in the case 

of a closed fully-submerged body by noting that we then have fb OG/anda = 0, 1 or 1/2 for lj 

outside, inside, or on the body surface b, respectively. 

4. Particular cases 

In the particular case when there is no body b, the integral identities (3.6b) and (3.6c) evidently 
are meaningless, and identities (3.6a), (3.8), and (3.9) all take the form 

= oGV2Odv-- fz=oG(a /az --fc~)dxdy. ¢~* fz < 

The above equation provides an explicit solution to the problem of determining the velocity 
potential ~(lj) in the lower-half space ~" ~< 0 when V2~ and ~ /az - - f~  are specified in the 
lower-half space z < 0 and on the mean sea-surface z = O, respectively. A classical problem 
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of this type is that of determining the potential induced by a given pressure distribution p(x ,y)  
and/or a flux distribution q(x, y) at the sea surface. The solution of this problem, stated in 
differential form by equations (2.1) and (2.3), is given by 

f)d. ¢(f~) = --i  _ dx G(~ ,x ,y , z  = O) [ fp(x ,y)  + iq(x,y)l . 

This solution is well known, and can be obtained by using more direct approaches than that 
adopted here. For instance, equations (2.1) and (2.3) can be solved directly by means of a 

double Fourier transformation with respect to the horizontal coordinates x and y. Another 
classical approach for determining the potential induced by a sea-surface pressure distribution 
is based on the use of a special Green function, G say, corresponding to the potential induced 
by a pressure impulse p(x, y ) =  6 ( x -  ~)6 ( y -  77) at the sea surface. This special Green func- 

tion in fact is a particular case of the more general Green function used in this study; speci- 

fically, we have G(~, x, y ) = - ifG(~, x, y , z = 0). 
Another important special problem is that of flow about a body in regular water waves, for 

which we have V2~ = 0 in the mean flow domain d and O¢/Oz - - f~  = 0 on the mean sea surface 
o. Unlike for the problem of flow induced by a sea-surface pressure and flux distribution, the 
integral identities obtained in the previous section do not provide an explicit solution to the 
problem of wave radiation and diffraction by a body. However, identities (3.6c) and (3.8) 

provide integral equations for determining the potential ~. = ~(~) on the body surface b. These 
integral equations take the form 

~,/2 = I  b Ga~/Onda--fbqbOG/Onda, 

(I - - fw , )¢ ,  = fb GOb~On d a - f b  (¢ -¢,)OG/On da, 

(4.1) 

(4.2) 

corresponding to identities (3.6c') and (3.8), respectively. An alternative form, corresponding 
to identity (3.9), of the integral equation (4.2) is 

e~, = fb GaCgan ~ - f b  ( ~ - ~ * )  ad~lan ~" (4.2a) 

In equations (4.2) and (4.2a), w. = w(~) and ~ = G(~, x) are the 'waterplane integral' and the 
'modified Green function' defined by equations (3.8a) and (3.9a), respectively. 

As was noted in the previous section equation (4.1) holds for ~ strictly on the body surface 
b, whereas equations (4.2) and (4.2a) are also valid in the mean flow domain d outside the 
body. This means that the latter equations can in principle be used to determine the potential ¢ 
in the entire solution domain d + b, for instance by using an iterative procedure based on 
a recurrence relation such as that given below by equation (4.5). However, it would usually 

be much simpler in practice to solve for ~ on the body surface b, and - in the event (rare in 
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reality) that knowledge of ~ outside b is in fact required - to determine ¢ outside b by means 
of equation (3.6a), which here takes the simplified form 

r), = fb G3¢/an da -- fb ¢3G/an da. (4.3) 

Equations (4.2) and (4.2a) also hold for ~ inside the body, as was noted in the previous 
section. It thus might appear that these equations must also define the potential ~ inside b. 
This result, were it true, would certainly be quite surprising, indeed fundamentally unaccep- 
table, for it would mean that the 'exterior boundary-value problem' stated by equations (2.1), 
(2.2), and (2.3) would somehow define a potential inside the body. It can easily be shown, 
however, that equations (4.2) and (4.2a) allow the potential ~ to be extended inside b in an 
entirely arbitrary manner. Indeed, equation (4.2) can be written in the form 

Cq~, = f  b GOb~an da--fb ¢OG/3nda, (4.4) 

where C is given by C= 1 - f w ,  - f b  8G/3n da. We have C = 0 for ~ strictly inside b, as may 
be seen from equations (3.7a), (3.7), (2.4), and (2.5), and indeed was already shown in the pre- 
vious section. Equation (4.4) therefore does not define ¢, inside b. For ~ outside b, on the 
other hand, we have C = 1, and equation (4.4) becomes equation (4.3), which clearly defines 
q~,. 

An interesting feature distinguishing the new integral equation (4.2) from the classical 
integral equation (4.1) is that whereas the dipole integral in the usual integral equation (4.1) 
is discontinuous at the body surface b (as was noted in the previous section, and indeed is 
well known), the corresponding integral in equation (4.2) is a continuous function (the dipole 
density ¢ -  ¢, vanishes as the 'integration point' x and the 'field point' Ij coincide). As a 
matter of fact, the term ~,/2 on the left side of the integral equation (4.1) is correct only 
for points ~j where the body surface is smooth (that is, has a tangent plane), as was also noted 
previously. The classical integral equation (4.1) thus requires evaluation of a discontinuous 
function exactly on the surface of discontinuity of that function. This awkward problem, 
notably from the point of view of numerical calculations, is avoided in the integral equation 
(4.2). Furthermore, the integrand (~-ep , )aG/an in the dipole integral in equation (4.2) can 
be shown to be non-singular, that is to remain finite, as x ~ ~. 

A choice of methods is available for solving the nonhomogeneous integral equation (4.2). 
In particular , a classical method of solution consists in using an iterative procedure. An obvious 
recurrence relation is that obtained by simply replacing 4~ by ¢<k) and 4~ (k+ 1) on the right and 
left sides, respectively, of equation (4.2). This yields 

(1 - - fw, )¢~  +') = if, --fb (¢(k)_dp~))aG/3n da, k >t O, (4.5) 

where ~b, = ~(~) is the known (since 34~/8n is prescribed on b) nonhomogeneous term in equa- 
tion (4.2) given by 
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~* = .(b GO~/Onda, (4.6) 

and the initial (zeroth) approximation ¢<o) must be specified somehow; for instance, one may 
simply take ¢(o) = 0. 

An interesting modified form of the integral equation (4.2) may be obtained by expressing 
the potential in the form ~ = k~, where ~b is the potential given by equation (4.6) and k is the 
function defined as k = qVff, in the manner used previously in [12]. By expressing the term 
¢ - - ~ b , - ¢ ( x ) - - ~ ( ~ ) - k ( x ) ~ ( x )  - -k(~)~b(~)--k~b--k,~,  in equation (4.2) in the form 
k,(~k - ~ , )  + (k -k , )~k ,  and multiplying the thus-modified integral equation by ff , ,  we may 
obtain 

[(1-- . fw,)  ~ , + fb (~b -- d/ , )OG/On da] eP, = ~k2, - fb (Jpd/ , - ~bc~, )OG/On da. (4.7) 

If the potentials ~ and ff were proportional to one another, the term ~ ,  -- ~b~, would vanish, 
and the modified integral equation (4.7) would yield the explicit solution 

~,= ~2,/[(1-fw,)t~,+fb(~k-~,)aG/Onda ] . (4.8) 

This solution may be expected to provide a useful explicit approximation if the potentials 
and ff are roughly proportional, that is if the function k = ~/~k is slowly varying. It is shown 

in [12] that for the special case of an open sea-surface piercing body in the shape of a half 
ellipsoid the explicit approximation (4.8) actually is exact for zero-frequency surge and sway 
motions and for infinite-frequency heave. Numerical calculations based on the integral equation 
(4.2) and the related explicit approximation (4.8) will be presented elsewhere. 

Acknowledgements 

This study is based on a report prepared with the support of the Office of Naval Research while 
the author was in the Department of Ocean Engineering at the Massachusetts Institute of 
Technology. Support from the David W. Taylor Naval Ship Research and Development Center 
for the preparation of the paper is also gratefully acknowledged. 

REFERENCES 

1. J.N. Newman, The theory of ship motions, Advances in Applied Mechanics 18 (1978) 221-283. 
2. C.C. Mei, Numerical methods in water-wave diffraction and radiation, Annual Review of Fluid Mech- 

anics 10 (1978) 393-416. 



13 

3. P. Guevel, L C. Daubisse, and G. Delhommeau, Oscillations des corps flottants soumis aux actions de 
la houle, Association Technique Maritime et A~ronautique (1978). 

4. D. Martin, R6solution num&ique du probl~me lin6aris6 de la tenue h la mer, Association Technique 
Maritime et A ~ronautique (1980). 

5. F. John, On the motion of floating bodies II. Simple harmonic motions, Communications on Pure and 
Applied Mathematics 3 (1950) 45 - 101. 

6. J .V. Wehausen, The motion of floating bodies, Annual Review of Fluid Mechanics 3 (1971) 237-268. 
7. W. D. Kim, On the harmonic oscillations of a rigid body on a free surface, Journal of Fluid Mechanics 

21 (1965) 427-451. 
8. A. Daubert and J. C. Lebreton, Diffraction de la houle sur des obstacles ~ parois verticales, La Houille 

Blanche 20 (1965) 337-344. 
9. W. Frank, Oscillation of cylinders in or below the free surface of deep fluids, David Taylor Naval Ship 

Research and Development Center Report 2375 (1967) 40 pp. 
10. J .C.  Lebreton and A. Margnac, Calcul des mouvements d'un navire ou d'une plateforme amarr6s dans 

la houle, La Houille Blanche 23 (1968) 379-389. 
11. F. Noblesse, The Green function in the theory of radiation and diffraction of regular water waves by a 

body, Journal of Engineering Mathematics 16 (1982) 137-169. 
12. F. Noblesse and G. Triantafyllou, Explicit approximations for calculating potential flow about a body, 

Journal o/Ship Research, in press. 
13. F. Noblesse, A slender-ship theory of wave resistance, Journal o/Ship Research, in press. 
14. J .N. Newman, Marine hydrodynamics, MIT Press, Cambridge, Massachusetts, 1978. 
15. A. Abramowitz and I. A. Stegun, Handbook of mathematical/unctions, Dover Publications, New York, 

1965. 


